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* Review last week on eigenvalue
problems with ordinary differential
equations

+ Finite element methods for boundary
value problems
— Elements and shape (basis) functions
— Getting the numerical equations by method

of weighted residuals
— Example problem and results
— Comparison with finite difference approach
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Review Eigenvalue Problem

* Numerical eigenvalue problems occur in
ODEs when the number of boundary
conditions is greater than the order of
the differential equation
— Example of this is solution for burning

velocity of a laminar flame

» Basic approach is to use finite-
differences and transform problem into
a numerical matrix eigenvalue problem

Californin State [ niversity
Northridge

Review Eigenvalue Problem Il

* Look at simple problem with known
solution as an example
— d2y/dx2 + A2y = 0 with y(0) = 0, y(1) = 0 and
fydx =1
— Have three boundary conditions and only a
second order equation
— Known solution is y = A sin Ax with A = nnt
» Use second order finite differences
= (Yir1 + Vi — 2y)/h2 + 22y, =0
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Review Eigenvalue Problem llI

» Have matrix eigenvalue problem with o
= -12h2 as the eigenvalue

Review Eigenvalue Problem [V

(-2 1 0 0 - 0 0T vy, ] A
1 -2 1 0 - 0 O}y, Y,
0o 1 -2 1 - 0 0 vy, Y,
0 1 . : : : — _JZhZ :
: : : e =2 1| Yo Yn-2
0 0 0 0 - 1 -2]yy,] | Yna |
Northridge ’
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 Solve by numerical techniques for
finding matrix eigenvalues

» The accuracy of the eigenvalues
depends on the grid

+ Often need only one (lowest or highest)

» Can only find as many eigenvalues as
there are grid nodes (not counting
boundary nodes)
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Finite Element Approaches

Review Eigenvalue Problem V

December 4, 2017

+ Comparison of numerical and exact
eigenvalues for grid with 4 interior
nodes (h = 0.2) shows lowest error for
smallest eigenvalue

Eigenvalue Percent
Numerical Exact error
3.090 3.142 1.66%
5.878 6.283 6.45%
8.090 9.425 14.16%
Northridge 9.511 12566  24.31%

Finite Element Methods

+ Designed for 2D and 3D geometries

» Can use for 1D case as example

+ Basic idea is to divide region into small
elements (line, area, volume)

» Use interpolating polynomial for each
element

— Represent both geometry (independent
variables) and dependent variable

— Interpolating polynomials called basis
functions
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Finite Element Methods Il

* Analysis for individual elements is
assembled into a set of nodal equations
for the entire region
— Result is set of algebraic equations for the

dependent variable at nodes that are
points on elements

— Because we do not use coordinate lines for
grid, it is easier to model complex
engineering geometries

— Finite-volume methods for fluid calculations
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Two-dimensional Element

(X45 Ya) ¢g=-1, 3
(X3, ¥3) n=1 n

(X4, Y1) __1

* Use dimensionless &-n coordina
system for basis functions

* Each element has several shape or

«Lasis functions, ¢,
Northridge

(X2, ¥2) €
n
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e

Shape (Basis) Functions

* Model geometry and dependent
variable over the element

* Use of same basis functions for both is
called isoparametric element

» Shape functions associated with
element nodes such that ¢(x;) = ;

4 4 4
X:ZXi(Pi y:Zyi(pi T :ZTi(Di
i1 i1 i1
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Shape (Basis) Functions I
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» Simplest shape functions are linear for
1D or bilinear for 2D

» For a linear element between nodes i
(at&=-1)andi+ 1 (at& = 1) we have ¢,
= (1-&)2and ¢ = (1 +E)/2

* X =X ¢; + Xj+q $jsq is correct at 1D nodes

« Bilinear functions for 2D element have
the form (1 £ &) (1 £ n)/2
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Bilinear Shape Functions

(X45 Ya) §=-1, §:_1’
(X31 y3) rl = r] - 1
(X2, ¥2) -

(X4, Y1) E]__,]’ 3211
Note: |, _ A-5A-n) 0, - A+8)A-n)
(X)) ' 4 2 4
O | W oen) o (1-9(+n)
Northridge 4 ! 4 ®

Modeling Differential Equation

» Look at same example used for finite
differences: d?T/dx2 + a?T =0

« Equation for T in terms N
of basis functions gives T =) T,
approximate value i=1

+ Seek solution in which differential
equation is satisfied in an average way
over the region; w, is weighting function

j (x)[T+aZT}dx 0 i=0,...N
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Modeling Differential Equation Il

» Last equation on previous chart called
method of weighted residuals (MWR)

« Various choices are used for weighting
functions, w;
» Galerkin method uses w; = ¢

* Known to match variational results for
linear problems

L d=T
k qoi(x){ e
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zf}dxo i=0,...N

Modeling Differential Equation IlI

+ Use integration by parts to eliminate
second derivatives which give zero for
linear basis functions

RN
R TISE ‘ZI}

. Multiply by dx/dx
Northridge

Modeling Differential Equation 1V

 Substituting result of integration by parts
into original equation gives (for each i)

~ ~L
Lo dT S dT LdT de,
. T dxj=| o & 99 G
-[0 (p{dxz ra } X {(p' dx} o dx dx

~L ~
e (D L L e
+[; @iade_{(pid)(} -| {X—(pia T}dx—o
0

0
* Next steps: handle boundary terms,
separate into elements, and introduce
...Shape functions for T
Nl)l‘tlll‘l(lgt

Modeling Differential Equation V

* Atx =0, ¢, = 1 and all other ¢, =
« Atx =L, ¢y =1 and all other ¢, =
* Have different equations fori=0andi=N

dt L[ dT dg, o, ﬂdx "

i=0 -——
dx| dx dx

J. dT ngN_ T ldx =0
dx dx

Al other i L{g?ﬁi—%azﬂdx =0

i=N —
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Modeling Differential Equation VI

* Integrals in summation are evaluated
over each element from x; to x;,4

» Substitute basis function equa- .
tion for T into these integrals

N
~ dZT.(p.
tdT d¢| _ Lo : Jd¢| t gD d¢|
B R Ml
L ~ L N L
L @,a’Tdx =_L {(oianZOTj(pj }dx = J-_ZOTJ-I.O pa’p;dx

Northridge
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Modeling Differential Equation VI

* Look shape functions for each ¢

L[ dT dg, oF w1 [t 995 do, 2
— A _pafT |dx=>T | | 2L _pa®p. [dx=0
-[O{dx a7 } JZ:;‘ ‘Jﬂ d dx 0P

N o, /(9,;2\ O\ ° Shaded

areas: single
Xi2 X4 Xi o X

lements
Xi+2 X|+3 Xi+q

+ All basis functions except ¢4 and ¢,,, are
zero where ¢; is not zero (X4 < X < Xjy4)

20

Calbiforni State University
Nnrlhlritlge

Modeling Differential Equation VI

» Have only three basis function pairs to
consider in any integral for ¢;: i and i -1,
iandi,iandi+1

% Ao, do; )
i-1 27 p,a°Q, d A. =
{ dx dx 18 Py X !

%a Ao, dop, % de,,, d
J‘-, |:££_¢ ¢|:|dX A1|+1_ |: P ¢I1 4 2¢|+1:|dx

Al—l_

X

xia| dx dx dx dx

N d(ﬂ d |
ZTJJ. |: d : d(ﬂ —pa (Pl}dx =ATia+AT+ALT, =0
j=0 X

21

Northridge

Linear Basis Functions

Results of Integration

a’ a’
alzg(xwl_)ﬂ)_ ﬂzg(xl+l_x|)+ X

i1 N i N

N d
Z J |: g, d¢| ¢iaz¢j:|dx = Ai,i—lTi—l + Ai.iTi + Ai,i+1Ti+1 =0

dx dx
Xisl d i d i
Aia= J' { fjax d(i _(oia2¢i11|dxzﬂil
v doy do,
Aj L |:di d(/’ _(pia2¢i:|dxzai+ail
Xis d A d .
- I'Al‘i,i:r}l = J.X_ {&(ﬁl_‘/’iazﬂu}dx =5
Nl)l‘thl‘l(lg( - 23
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0 X<X1  Getneeded basis
X— X4 .
oy Jn <x<¥% functions by
P (=13 % substituting i-1
ﬁ X <X<X, andi+1fori
i+l i
0 X2 Xi+1 0 X < X 1
Subs.tltute basis 1 X <X<X%
functionsand  de(x) _ | x—x,
derivatives into  dx 1 <xs<x,
mtegrals Xivg — X%
Nl)l‘thl‘l(lg( 0 X> %7
Constant Steps x,,; — %, = h
ha’® 1 ha® 1
a; = T—H ﬂi —T"'H
S L d(/)j do, 2
]Z:(;Tj J.o {d)(dx_(”ia @; |dx=A T+ AT +A T, =0
. r ; ' 2
:J' wl Aoy dogy o axona 1
wa| dx o odx 6 h
Xis1 d¢ d(D 2 Zhaz 2
= T _pa‘e |dx=
Ai,l J.Xi1|: dX dX ¢| ¢)I 3 h
% do., do, ha® 1
Ai i I ;pxlﬁ_("i |+1}dx 6 E
Nl)l‘thl‘l(lg(
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Equations to be Solved

December 4, 2017

dT dT
ix Ay Tyt Bualy =——

X=X X=Xy

Aol + Sl =-

BT +(0‘i +ai+1)Ti +Bul,=0 i=1...N-1

+ Tridiagonal system of N+1 equations
with N+3 variables
— N+1 temperature values and 2 boundary
gradients
— Boundary conditions will specify two other
__equations

Californizt Stale Unhersity 25
Northridge

Boundary Gradients

+ If we have Dirichlet boundary
conditions, we can solve for
temperatures then find gradients

* For Neumann or mixed boundary
conditions, we must include gradients in
tridiagonal solution

» Write boundary conditions as adT/dx +
bT = c and make g, = dT/dx|,-, the first
variable and g, = dT/dx|,-, the last one
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Finite Element Equations

» Equations below only handle boundary
conditions with specified gradients (a, = 0)

[a, b, 0 0 0 - 0 o7 g, Cy |
-1a 5B 0 0 - 0 o T,
0 B a+a, B O 0 of T, 0
0 0 B a+a B 0 o T, 0
00 0 B, : o=
00 0 0 e o B 0Tl |o
0 0 0 0 Pua onatay 1| Ty 0
0 0 0 0 0 by ay | 9y | |Gy
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Solution Errors fora = 2

N 100 100 10 10

Method FD FE FD FE

€RMS 1.7x10% | 1.7x10% | 1.8x103 | 1.8x103

e 2.4x105 | 2.4x105 | 2.4x103 | 2.4x103

max

€qraa(0) | 3.6x10% | 7.0x10°5 | 3.6x102 | 7.0x10

€grad(L) |2.1x10|9.6x10-5 | 1.8x102 | 9.5x103
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Solution Errors fora=0.2

N 100 100 10 10

Method FD FE FD FE

€RrMS 6.2x10-1°|6.2x10-1°| 6.5x10-8 | 6.5x108

ema | 8.6x10710[8.6x1010| 8.5x108| 8.5x10°8

€graa(0) | 1.3x10® | 2.2x10 [1.3x104| 2.2x107

egraa(L) | 1.3x10°6 | 4.5x109 [1.3x104| 4.4x107
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Notes on the Error
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» The formulations used here for finite
elements and finite differences have
second order error
— Notes both equations almost the same

+ Although temperature errors are similar,
finite elements gives smaller errors in
the gradients

» The heat source parameter, a2 = b/k,
can change the error for a given h
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Finite Element Grids

Grid (Mesh) Quality

+ Elements allow fitting complex objects
used in almost all engineering designs

* Modern engineering software usually
has grid generation that allows users to
specify overall data on grid sizes and
then has a program that generates the
finite-element grid

» Element quality is a prime concern
when considering the grid generated
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+ Finite element mesh quality

+ Grid generation programs for finite-
element analysis of engineering
problems report measures of grid
quality
— Skewness
— Smoothness
— Aspect ratio
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Mesh Quality: Skewness

Other Mesh Quality Issues

» Based on difference from an equilateral
element

* Use quadrilateral elements as an
example: equilateral elements have 90-
degree angles

+ Skewness = Max[w,m]

90 90

 Best value is zero; worst value is 1
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* Resolution — mesh should be finer in
areas where there are significant
changes such as fluid boundary layers,
and stress concentrations

» Smoothness — changes in element
sizes should be gradual

+ Cell aspect ratios should usually not
deviate more than 20% from uniform
shaped cells except in special cases
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