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Outline
• Review last week on eigenvalue 

problems with ordinary differential 
equations

• Finite element methods for boundary 
value problems
– Elements and shape (basis) functions
– Getting the numerical equations by method 

of weighted residuals
– Example problem and results
– Comparison with finite difference approach
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Review Eigenvalue Problem

• Numerical eigenvalue problems occur in 
ODEs when the number of boundary 
conditions is greater than the order of 
the differential equation
– Example of this is solution for burning 

velocity of a laminar flame

• Basic approach is to use finite-
differences and transform problem into 
a numerical matrix eigenvalue problem
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Review Eigenvalue Problem II

• Look at simple problem with known 
solution as an example
– d2y/dx2 + 2y = 0 with y(0) = 0, y(1) = 0 and 
ydx = 1

– Have three boundary conditions and only a 
second order equation

– Known solution is y = A sin x with  = n

• Use second order finite differences
– (yi+1 + yi-1 – 2yi)/h2 + 2yi = 0
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Review Eigenvalue Problem III
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• Have matrix eigenvalue problem with 
= -2h2 as the eigenvalue
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Review Eigenvalue Problem IV

• Solve by numerical techniques for 
finding matrix eigenvalues

• The accuracy of the eigenvalues 
depends on the grid

• Often need only one (lowest or highest)

• Can only find as many eigenvalues as 
there are grid nodes (not counting 
boundary nodes)
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Review Eigenvalue Problem V
• Comparison of numerical and exact 

eigenvalues for grid with 4 interior 
nodes (h = 0.2) shows lowest error for 
smallest eigenvalue

Eigenvalue Percent

Numerical Exact error

3.090 3.142 1.66%

5.878 6.283 6.45%

8.090 9.425 14.16%

9.511 12.566 24.31% 8

Finite Element Methods
• Designed for 2D and 3D geometries
• Can use for 1D case as example
• Basic idea is to divide region into small 

elements (line, area, volume)
• Use interpolating polynomial for each 

element
– Represent both geometry (independent 

variables) and dependent variable
– Interpolating polynomials called basis 

functions
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Finite Element Methods II

• Analysis for individual elements is 
assembled into a set of nodal equations 
for the entire region
– Result is set of algebraic equations for the 

dependent variable at nodes that are 
points on elements

– Because we do not use coordinate lines for 
grid, it is easier to model complex 
engineering geometries

– Finite-volume methods for fluid calculations
10

Two-dimensional Element
(x4, y4)

(x2, y2)
(x1, y1)

(x3, y3)

ξ = -1, 
η = -1

ξ = -1, 
η = 1

ξ = 1, 
η = 1

ξ = 1, 
η = -1

• Use dimensionless - coordinate 
system for basis functions

• Each element has several shape or 
basis functions, i
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Shape (Basis) Functions

• Model geometry and dependent 
variable over the element

• Use of same basis functions for both is 
called isoparametric element

• Shape functions associated with 
element nodes such that i(x(j)) = ij
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Shape (Basis) Functions II

• Simplest shape functions are linear for 
1D or bilinear for 2D

• For a linear element between nodes i 
(at  = -1) and i + 1 (at  = 1) we have i

= (1 – )/2 and i+1 = (1 + )/2

• x = xi i + xi+1 i+1 is correct at 1D nodes

• Bilinear functions for 2D element have 
the form (1  ) (1  )/2
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Bilinear Shape Functions
(x4, y4)

(x2, y2)
(x1, y1)

(x3, y3)

ξ = -1, 
η = -1

ξ = -1, 
η = 1

ξ = 1, 
η = 1

ξ = 1, 
η = -1

4

)1)(1(

4

)1)(1(
4

)1)(1(

4

)1)(1(

43

21















Note:

i(x(j)) 
= ij
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Modeling Differential Equation

• Look at same example used for finite 
differences: d2T/dx2 + a2T = 0
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• Equation for T in terms 

of basis functions gives 
approximate value

• Seek solution in which differential 
equation is satisfied in an average way 
over the region; wi is weighting function
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Modeling Differential Equation II

• Last equation on previous chart called 
method of weighted residuals (MWR)

• Various choices are used for weighting 
functions, wi

• Galerkin method uses wi = i

• Known to match variational results for 
linear problems
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Modeling Differential Equation III

• Use integration by parts to eliminate 
second derivatives which give zero for 
linear basis functions
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Modeling Differential Equation IV

• Substituting result of integration by parts 
into original equation gives (for each i)
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• Next steps: handle boundary terms, 
separate into elements, and introduce 
shape functions for T
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Modeling Differential Equation V

• At x = 0, 0 = 1 and all other i = 0
• At x = L, N = 1 and all other i = 0
• Have different equations for i = 0 and i = N
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Modeling Differential Equation VI

• Integrals in summation are evaluated 
over each element from xi to xi+1
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• Substitute basis function equa-

tion for T into these integrals
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Modeling Differential Equation VI

• Look shape functions for each i
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xi-2    xi-1 xi xi+1 xi+2   xi+3 xi+4

i-1 i i+1 i+2   i+3

• All basis functions except i-1 and i+1 are 
zero where i is not zero (xi-1 < x < xi+1)

• Shaded 
areas: single 
elements
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Modeling Differential Equation VI

• Have only three basis function pairs to 
consider in any integral for i: i and i –1, 
i and i, i and i +1
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Linear Basis Functions
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Get needed basis 
functions by 
substituting i-1 
and i +1 for i

Substitute basis 
functions and 
derivatives into 
integrals
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Results of Integration
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Constant Steps xi+1 – xi = h
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Equations to be Solved
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1000
xxdx
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  1,,101111   NiTTT iiiiiii 

• Tridiagonal system of N+1 equations 
with N+3 variables
– N+1 temperature values and 2 boundary 

gradients

– Boundary conditions will specify two other 
equations
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Boundary Gradients

• If we have Dirichlet boundary 
conditions, we can solve for 
temperatures then find gradients

• For Neumann or mixed boundary 
conditions, we must include gradients in 
tridiagonal solution

• Write boundary conditions as a dT/dx + 
bT = c and make g0 = dT/dx|x=0 the first 
variable and gL = dT/dx|x=L the last one
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Finite Element Equations
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• Equations below only handle boundary 
conditions with specified gradients (a0  0)
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Solution Errors for a = 2
N 100 100 10 10

Method FD FE FD FE

eRMS 1.7x10-5 1.7x10-5 1.8x10-3 1.8x10-3

emax 2.4x10-5 2.4x10-5 2.4x10-3 2.4x10-3

egrad(0) 3.6x10-4 7.0x10-5 3.6x10-2 7.0x10-3

egrad(L) 2.1x10-4 9.6x10-5 1.8x10-2 9.5x10-3
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Solution Errors for a = 0.2
N 100 100 10 10

Method FD FE FD FE

eRMS 6.2x10-10 6.2x10-10 6.5x10-8 6.5x10-8

emax 8.6x10-10 8.6x10-10 8.5x10-8 8.5x10-8

egrad(0) 1.3x10-6 2.2x10-9 1.3x10-4 2.2x10-7

egrad(L) 1.3x10-6 4.5x10-9 1.3x10-4 4.4x10-7
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Notes on the Error

• The formulations used here for finite 
elements and finite differences have 
second order error
– Notes both equations almost the same

• Although temperature errors are similar, 
finite elements gives smaller errors in 
the gradients

• The heat source parameter, a2 = b/k, 
can change the error for a given h
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Finite Element Grids

• Elements allow fitting complex objects 
used in almost all engineering designs

• Modern engineering software usually
has grid generation that allows users to
specify overall data on grid sizes and 
then has a program that generates the 
finite-element grid

• Element quality is a prime concern
when considering the grid generated

Grid (Mesh) Quality

• Finite element mesh quality

• Grid generation programs for finite-
element analysis of engineering
problems report measures of grid 
quality
– Skewness

– Smoothness

– Aspect ratio
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Mesh Quality: Skewness

• Based on difference from an equilateral
element

• Use quadrilateral elements as an 
example: equilateral elements have 90-
degree angles

• Skewness = Max ,

• Best value is zero; worst value is 1
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Other Mesh Quality Issues

• Resolution – mesh should be finer in 
areas where there are significant 
changes such as fluid boundary layers, 
and stress concentrations

• Smoothness – changes in element 
sizes should be gradual

• Cell aspect ratios should usually not
deviate more than 20% from uniform
shaped cells except in special cases
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