Finite Element Solutions of Boundary-value Problems in ODEs

Larry Caretto Mechanical Engineering 501AB Seminar in Engineering Analysis

December 4, 2017

California State University Northridge

Review Eigenvalue Problem Review Eigenvalue Problem II Numerical eigenvalue problems occur in Look at simple problem with known ODEs when the number of boundary solution as an example conditions is greater than the order of $-d^{2}y/dx^{2} + \lambda^{2}y = 0$ with y(0) = 0, y(1) = 0 and the differential equation ∫ydx = 1 - Example of this is solution for burning - Have three boundary conditions and only a velocity of a laminar flame second order equation - Known solution is $y = A \sin \lambda x$ with $\lambda = n\pi$ · Basic approach is to use finitedifferences and transform problem into · Use second order finite differences a numerical matrix eigenvalue problem $-(y_{i+1} + y_{i-1} - 2y_i)/h^2 + \lambda^2 y_i = 0$ 3 Northridge Northridge

ME 501A Seminar in Engineering Analysis

Review Eigenvalue Problem V					
 Comparison of numerical and exact eigenvalues for grid with 4 interior nodes (h = 0.2) shows lowest error for smallest eigenvalue 					
	Eigenval	ue	Percent		
Nume	Numerical		error		
	3.090	3.142	1.66%		
	5.878	6.283	6.45%		
	8.090	9.425	14.16%		
California State University Northridge	9.511	12.566	24.31%		

11

Shape (Basis) Functions

- · Model geometry and dependent variable over the element
- · Use of same basis functions for both is called isoparametric element
- · Shape functions associated with element nodes such that $\phi_i(\mathbf{x}_{(i)}) = \delta_{ii}$

$$x = \sum_{i=1}^{4} x_i \varphi_i \qquad y = \sum_{i=1}^{4} y_i \varphi_i \qquad T = \sum_{i=1}^{4} T_i \varphi_i$$

х

Linear Basis Functions						
$\varphi_{i}(x) = \begin{cases} 0 & x \le x_{i-1} & 0 \\ \frac{x - x_{i-1}}{x_{i} - x_{i-1}} & x_{i-1} \le x \le x_{i} & ft \\ \frac{x_{i+1} - x_{i}}{x_{i+1} - x_{i}} & x_{i} \le x \le x_{i+1} & a \end{cases}$	Set needed basis unctions by ubstituting i-1 nd i +1 for i					
$\begin{bmatrix} 0 & x \ge x_{i+1} \\ \text{Substitute basis} \\ \text{functions and} & d\varphi_i(x) \end{bmatrix}$	$\begin{bmatrix} 0 & x \le x_{i-1} \\ \frac{1}{x_i - x_{i-1}} & x_{i-1} \le x \le x_i \end{bmatrix}$					
derivatives into dx - integrals Northridge	$ \begin{vmatrix} -1 \\ x_{i+1} - x_i \\ 0 \\ x \ge x_{i+1}^{22} \end{vmatrix} $					

$$\begin{aligned} \frac{\text{Results of Integration}}{\alpha_{i} = \frac{a^{2}}{3}(x_{i+1} - x_{i}) - \frac{1}{x_{i+1} - x_{i}}} & \beta_{i} = \frac{a^{2}}{6}(x_{i+1} - x_{i}) + \frac{1}{x_{i+1} - x_{i}}}{\sum_{j=0}^{N} T_{j} \int_{0}^{L} \left[\frac{d\varphi_{j}}{dx} \frac{d\varphi_{i}}{dx} - \varphi_{i}a^{2}\varphi_{j} \right] dx = A_{i,i-1}T_{i-1} + A_{i,i}T_{i} + A_{i,i+1}T_{i+1} = 0\\ A_{i,i-1} = \int_{x_{i-1}}^{x_{i+1}} \left[\frac{d\varphi_{i-1}}{dx} \frac{d\varphi_{i}}{dx} - \varphi_{i}a^{2}\varphi_{i-1} \right] dx = \beta_{i-1}\\ A_{i,i} = \int_{x_{i-1}}^{x_{i+1}} \left[\frac{d\varphi_{i}}{dx} \frac{d\varphi_{i}}{dx} - \varphi_{i}a^{2}\varphi_{i} \right] dx = \alpha_{i} + \alpha_{i-1}\\ A_{i,i} = \int_{x_{i-1}}^{x_{i+1}} \left[\frac{d\varphi_{i+1}}{dx} \frac{d\varphi_{i}}{dx} - \varphi_{i}a^{2}\varphi_{i} \right] dx = \beta_{i} \end{aligned}$$

$$\frac{\text{Constant Steps } \mathbf{x}_{i+1} - \mathbf{x}_{i} = \mathbf{h}}{\alpha_{i} = \frac{ha^{2}}{3} - \frac{1}{h}} \qquad \beta_{i} = \frac{ha^{2}}{6} + \frac{1}{h}}$$

$$\sum_{j=0}^{N} T_{j} \int_{0}^{L} \left[\frac{d\varphi_{j}}{dx} \frac{d\varphi_{i}}{dx} - \varphi_{i}a^{2}\varphi_{j} \right] dx = A_{i,i-1}T_{i-1} + A_{i,i}T_{i} + A_{i,i+1}T_{i+1} = 0$$

$$A_{i,i-1} = \int_{x_{i-1}}^{x_{i+1}} \left[\frac{d\varphi_{i-1}}{dx} \frac{d\varphi_{i}}{dx} - \varphi_{i}a^{2}\varphi_{i-1} \right] dx = \frac{ha^{2}}{6} + \frac{1}{h}$$

$$A_{i,i} = \int_{x_{i-1}}^{x_{i+1}} \left[\frac{d\varphi_{i}}{dx} \frac{d\varphi_{i}}{dx} - \varphi_{i}a^{2}\varphi_{i} \right] dx = \frac{2ha^{2}}{3} - \frac{2}{h}$$

$$A_{i,i+1} = \int_{x_{i-1}}^{x_{i+1}} \left[\frac{d\varphi_{i+1}}{dx} \frac{d\varphi_{i+1}}{dx} - \varphi_{i}a^{2}\varphi_{i+1} \right] dx = \frac{ha^{2}}{6} + \frac{1}{h_{4}}$$

Finite Element Equations										
•	Eq cor	uation ndition	s belo s with	w o sp	only	y ha ified	ndle bo gradier	uno nts	dary (a₀ ≠	± 0)
$\int a_0$	b_0	0	0	0			0	0	$\begin{bmatrix} g_0 \end{bmatrix}$	$\begin{bmatrix} c_0 \end{bmatrix}$
-1	$\alpha_{_0}$	$\beta_{_0}$	0	0			0	0	T_0	0
0	β_1	$\alpha_1 + \alpha_2$	β_2	0			0	0	T_1	0
0	0	β_2	$\alpha_2 + \alpha_3$	β_3			0	0	T_2	0
0	0	0	β_3	·.			÷	÷	:	= :
1	÷	:	:		·.		÷	÷	1 :	1:1
0	0	0	0			·	$\beta_{\scriptscriptstyle N-1}$	0	T _{N-1}	0
0	0	0	0			$\beta_{\scriptscriptstyle N-1}$	$\alpha_{N-1} + \alpha_N$	-1	T_N	0
0	0	0	0			0	b_{N}	a_N	$[g_N]$	$\lfloor c_N \rfloor$
	Nort	state University hridge								27

Solution Errors for $a = 2$				
N	100	100	10	10
Method	FD	FE	FD	FE
e _{RMS}	1.7x10 ⁻⁵	1.7x10 ⁻⁵	1.8x10 ⁻³	1.8x10 ⁻³
e _{max}	2.4x10 ⁻⁵	2.4x10 ⁻⁵	2.4x10 ⁻³	2.4x10 ⁻³
e _{grad} (0)	3.6x10-4	7.0x10 ⁻⁵	3.6x10 ⁻²	7.0x10 ⁻³
e _{grad} (L)	2.1x10 ⁻⁴	9.6x10 ⁻⁵	1.8x10 ⁻²	9.5x10 ⁻³
California State Univers	e e	1		28

Solution Errors for a = 0.2				
N	100	100	10	10
Method	FD	FE	FD	FE
e _{RMS}	6.2x10 ⁻¹⁰	6.2x10 ⁻¹⁰	6.5x10 ⁻⁸	6.5x10 ⁻⁸
e _{max}	8.6x10 ⁻¹⁰	8.6x10 ⁻¹⁰	8.5x10 ⁻⁸	8.5x10 ⁻⁸
$e_{grad}(0)$	1.3x10 ⁻⁶	2.2x10 ⁻⁹	1.3x10 ⁻⁴	2.2x10 ⁻⁷
$e_{grad}(L)$	1.3x10 ⁻⁶	4.5x10 ⁻⁹	1.3x10 ⁻⁴	4.4x10 ⁻⁷
California State Univer Northridg	sity ge	1		29

Notes on the Error
 The formulations used here for finite elements and finite differences have second order error Notes both equations almost the same
 Although temperature errors are similar, finite elements gives smaller errors in the gradients
 The heat source parameter, a² = b/k, can change the error for a given h
California State University 30

34

Finite Element Grids

- Elements allow fitting complex objects used in almost all engineering designs
- Modern engineering software usually has grid generation that allows users to specify overall data on grid sizes and then has a program that generates the finite-element grid
- Element quality is a prime concern when considering the grid generated

California State University Northridge

Mesh Quality: Skewness Other Mesh Quality Issues Based on difference from an equilateral • Resolution – mesh should be finer in areas where there are significant element changes such as fluid boundary layers, · Use quadrilateral elements as an and stress concentrations example: equilateral elements have 90degree angles · Smoothness - changes in element sizes should be gradual • Skewness = Max $\left[\frac{\theta_{max}-90}{90}, \frac{90-\theta_{min}}{90}\right]$ · Cell aspect ratios should usually not Best value is zero; worst value is 1 deviate more than 20% from uniform shaped cells except in special cases 33 Northridge Northridge

31